Geometry

Instruction: Provide answers together with their proofs

Warm up!

Let $A B C$ be a right-angled triangle with right angle at A. Let D and E be two points on $B C$ such that B, C, D, E are all distinct. Let the circumcircles of $A B D$ and $A C E$ meet again at F, and let the circumcircles of $A B E$ and $A C D$ meet again at G, and let the circumcircles of $B D G$ and $C D F$ meet again at H. How many cyclic quadrilaterals are there?

Level 1

Let A, B, C, D, E, F, G, H be distinct points on a plane such
that $B C D E, A B E F, C D A F, B C F G, D A B G, C D G H, A B C H$ and $D A H E$ are all cyclic. It is given that no three points are collinear and $A B C D$ is not cyclic. How many cyclic quadrilaterals are there?

Level 2

Now include the circumcentres of the cyclic quadrilaterals found in Level 1. How many new cyclic quadrilaterals are there?

Level 3

Let τ be a collection of points on the plane such that each circle in Level 2 passes through at least one point in τ. Find the minimum number of points τ can have.

Bonus!!!

Find all pairs of circles in Level 1 whose radical axis and radial axis are the radial axis and radical axis of another pair of circles in Level 1 respectively.
(Radial axis of two circles is the line passing through their centres. Can check the net for more detailed explanation for radical axis.)

Number Theory

Prove or disprove

If a, b and c are pairwise coprime positive odd integers. Then there exist unique positive integers x, y and z such that;
i) $\quad a=\operatorname{gcd}(2 x-1,2 y, 2 z+1)$,
ii) $\quad b=\operatorname{gcd}(2 y-1,2 z, 2 x+1)$,
iii) $\quad c=\operatorname{gcd}(2 z-1,2 x, 2 y+1)$,
iv) $\quad a b c \geq \max (x, y, z)$.

