

Number Theory

Instruction: Provide answers together with their proofs

Warm up!

If $x_1, x_2, x_3, y_1, y_2, y_3$ are integers satisfying

$$\begin{cases} x_1y_2 - x_2y_1 = 1, \\ x_2y_3 - x_3y_2 = 1, \\ x_3y_1 - x_1y_3 = 1. \end{cases}$$

Show that $x_1 + x_2 + x_3 = 0$.

Level 1

Let $n \ge 2$. Suppose there exist non-zero integers x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n such that $x_iy_{i+1} - x_{i+1}y_i = 1$ for $i = 1, 2, \dots, n-1$, and $x_ny_1 - x_1y_n = 1$. Show that

$$\frac{1}{x_1x_2} + \frac{1}{x_2x_3} + \dots + \frac{1}{x_{n-1}x_n} + \frac{1}{x_nx_1} = 0.$$

Level 2

Find all $n \ge 2$ such that there exist integers x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n satisfying $x_i y_{i+1} - x_{i+1}y_i = 1$ for $i = 1, 2, \dots, n-1$, and $x_n y_1 - x_1 y_n = 1$.

Level 3

Prove or Disprove.

Let $n \ge 2$. Suppose there exist integers x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n such that $x_iy_{i+1} - x_{i+1}y_i = 1$ for $i = 1, 2, \dots, n-1$, and $x_ny_1 - x_1y_n = 1$.

Must there exist distinct i_1, i_2, \dots, i_k such that $x_{i_1} + x_{i_2} + \dots + x_{i_k} = 0$?

Proposed by: Pionaj